Invariant curves for endomorphisms of $${{\mathbb {P}}}^1\times {{\mathbb {P}}}^1$$

نویسندگان

چکیده

Let $$A_1, A_2\in {{\mathbb {C}}}(z)$$ be rational functions of degree at least two that are neither Lattès maps nor conjugate to $$z^{\pm n}$$ or $$\pm T_n.$$ We describe invariant, periodic, and preperiodic algebraic curves for endomorphisms $$({{\mathbb {P}}}^1({{\mathbb {C}}}))^2$$ the form $$(z_1,z_2)\rightarrow (A_1(z_1),A_2(z_2)).$$ In particular, we show if $$A\in is not a “generalized map”, then any (A, A)-invariant curve has genus zero can parametrized by commuting with A. As an application, A defined over subfield K $$ {C}}}$$ give criterion point {P}}}^1(K))^2$$ have Zariski dense A)-orbit in terms canonical heights, deduce from this version conjecture Zhang on existence points forward orbits. also prove result about functional decompositions iterates functions, which implies particular there exist most finitely many $$(A_1, A_2)$$ -invariant given bi-degree $$(d_1,d_2).$$

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$\mathbb{Z}_{q}(\mathbb{Z}_{q}+u\mathbb{Z}_{q})$-Linear Skew Constacyclic Codes

In this paper, we study skew constacyclic codes over the ring ZqR where R = Zq + uZq, q = p s for a prime p and u2 = 0. We give the definition of these codes as subsets of the ring ZqR . Some structural properties of the skew polynomial ring R[x, θ] are discussed, where θ is an automorphism of R. We describe the generator polynomials of skew constacyclic codes over R and ZqR. Using Gray images ...

متن کامل

$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.

متن کامل

On Codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$

In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring $R=\F_{q}+v\F_{q}+v^{2}\F_{q}$, where $v^{3}=v$, for $q$ odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over $R$. Further, we give bounds on the minimum distance of LCD codes over $\F_q$ and extend these to codes ove...

متن کامل

Self-Dual Codes over $\mathbb{Z}_2\times (\mathbb{Z}_2+u\mathbb{Z}_2)$

In this paper, we study self-dual codes over Z2× (Z2+uZ2), where u 2 = 0. Three types of self-dual codes are defined. For each type, the possible values α, β such that there exists a code C ⊆ Z2×(Z2+uZ2) β are established. We also present several approaches to construct self-dual codes over Z2 × (Z2 + uZ2). Moreover, the structure of two-weight self-dual codes is completely obtained for α · β 6...

متن کامل

Skew cyclic codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$

In this article, we study skew cyclic codes over ring R = Fq + vFq + v 2 Fq, where q = p, p is an odd prime and v3 = v. We describe generator polynomials of skew cyclic codes over this ring and investigate the structural properties of skew cyclic codes over R by a decomposition theorem. We also describe the generator polynomials of the duals of skew cyclic codes. Moreover, the idempotent genera...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2022

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-021-02304-5